令和 5 (2023) 年度特別研究

双曲幾何とユークリッド幾何の公式の比較

(指導教員 尾國 新一)

愛媛大学 理学部 理学科 数学・数理情報コース 中村 威晴

目次

1	イントロダクション	2
2	k-ローレンツ内積	3
3.1 3.2 3.3	距離と角度 準備 2点の距離 角度	
4	双曲三角形の公式	6
5	距離空間の証明	7
6	$h_{k\pm}$ からユークリッド平面への近似	8

1 イントロダクション

双曲幾何における双曲正弦定理, 双曲余弦定理がどのようにユークリッド平面での余弦定理, 正弦定理と対応しているのかを明らかにする.

そのために、双曲幾何の双曲面モデル

$$\mathbf{h}_{+} = \{ \mathbf{x} \in \mathbb{R}^3 \mid x_1^2 + x_2^2 - x_3^2 = -1, \ x_3 > 0 \}$$

の変形により、この曲面から $x_3 = 1$ 平面への近似を考える. 双曲面モデル上の三角形に対して成り立つ 2 つの公式

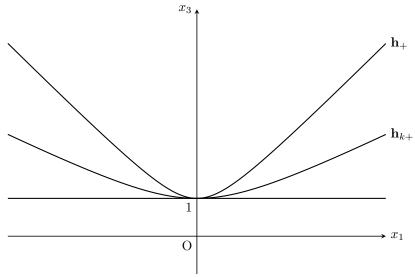
(i) $\cosh l = \cosh m \cosh n - \sinh m \sinh n \cos \alpha$

(ii)
$$\frac{\sinh l}{\sin \alpha} = \frac{\sinh m}{\sin \beta} = \frac{\sinh n}{\sin \gamma}$$

を双曲余弦定理, 双曲正弦定理という. \mathbf{h}_+ の変形として,k>0, $\mathbf{h}_{k+}=\{\mathbf{x}\in\mathbb{R}^3\mid k^2(x_1^2+x_2^2)-x_3^2=-1,\ x_3>0\}$ を考える. このとき, \mathbf{h}_{k+} は k=1 のとき \mathbf{h}_+ であり, $k\to 0$ のとき $x_3=1$ 平面になる.

本まとめではまず,変形双曲面モデル \mathbf{h}_{k+} での幾何学を考察し、特に双曲余弦定理,双曲正弦定理,及びそれらの証明を与える.

さらに、この双曲余弦定理、双曲正弦定理を $k\to 0$ を考えることで、ユークリッド幾何の通常の余弦定理、正弦定理が対応していることを示す。



2 k-ローレンツ内積

$$k > 0$$
, $\mathbf{h}_{k+} = \{ \mathbf{x} \in \mathbb{R}^3 \mid k^2(x_1^2 + x_2^2) - x_3^2 = -1, \ x_3 > 0 \}$

について考える.

定義 2.1. $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ に対し k-ローレンツ内積 $\langle \mathbf{x}, \mathbf{y} \rangle_k$ を以下で定める.

$$\langle \mathbf{x}, \mathbf{y} \rangle_k = k^2 (x_1 y_1 + x_2 y_2) - x_3 y_3$$

以降、k-ローレンツ内積を内積とよぶ.

命題 2.2. $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$ および $\lambda \in \mathbb{R}$ として、それらの内積について次の性質が成り立つ.

$$\langle \mathbf{x}, \mathbf{y} \rangle_k = \langle \mathbf{y}, \mathbf{x} \rangle_k,$$

$$\langle \lambda \mathbf{x}, \mathbf{y} \rangle_k = \lambda \langle \mathbf{x}, \mathbf{y} \rangle_k,$$

$$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle_k = \langle \mathbf{x}, \mathbf{y} \rangle_k + \langle \mathbf{x}, \mathbf{z} \rangle_k.$$

3 距離と角度

3.1 準備

 $A, B, X, ... \in \mathbb{R}^3$ に対し、これらの点の原点に関する位置ベクトルをそれぞれ $\mathbf{a}, \mathbf{b}, \mathbf{x}, ...$ で表す.

補題 3.1. $A, B \in \mathbf{h}_{k+}$ のとき

$$\langle \mathbf{a}, \mathbf{b} \rangle_k \leq -1$$

また $\langle \mathbf{a}, \mathbf{b} \rangle_k = -1 \Leftrightarrow A = B$

[証明] $\langle \mathbf{a}, \mathbf{b} \rangle_k > -1$ と仮定する. このとき

$$k^2(a_1b_1 + a_2b_2) > a_3b_3 - 1 \quad (a_3, b_3 \ge 1)$$

であるから

$$k^4(a_1b_1 + a_2b_2)^2 > (a_3b_3 - 1)^2$$

また

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) \ge (a_1b_1 + a_2b_2)^2$$

よって

$$(a_3^2 - 1)(b_3^2 - 1) = k^4(a_1^2 + a_2^2)(b_1^2 + b_2^2)$$

$$\ge k^4(a_1b_1 + a_2b_2)^2$$

$$> (a_3b_3 - 1)^2$$

しかし

$$a_3^2b_3^2 - a_3^2 - a_3^2 + 1 > a_3^2b_3^2 - 2a_3b_3 + 1$$
$$a_3^2 - 2a_3b_3 + b_3^2 < 0$$
$$(a_3 - b_3)^2 < 0$$

となり矛盾.

したがって、 $\langle \mathbf{a}, \mathbf{b} \rangle_k \leq -1$.

また

$$\langle \mathbf{a}, \mathbf{b} \rangle_k = -1 \Leftrightarrow k^2(a_1b_1 + a_2b_2) = a_3b_3 - 1$$

このとき

ゆえに

$$a_1^2 + a_2^2 = b_1^2 + b_2^2 (1)$$

また $a_1b_2 \neq a_2b_1$ のとき $(a_1^2 + a_2^2)(b_1^2 + b_2^2) > (a_1b_1 + a_2b_2)^2$ なので

$$a_1 b_2 = a_2 b_1 \tag{2}$$

 $(1), (2) \$ \$)

$$\begin{cases} a_1 = \pm b_1 \\ a_2 = \pm b_2 \end{cases}$$
 (複合同順)

 $a_1 = b_1, a_2 = b_2$ のとき

$$A = B$$

 $a_1 = -b_1, a_2 = -b_2$ のとき

$$-1 = \langle \mathbf{a}, \mathbf{b} \rangle_k = -k^2 (a_1^2 + a_2^2) - a_3^2 = -2a_3^2 + 1$$

よって $a_3 = 1$ ゆえに A, B はともに (0,0,1) となり、A = B

補題 3.2. $A \in \mathbf{h}_{k+}$,

$$\langle \mathbf{a}, \mathbf{a} \rangle_k = -1, \langle \mathbf{u}, \mathbf{u} \rangle_k = \langle \mathbf{v}, \mathbf{v} \rangle_k = 1,$$

 $\langle \mathbf{a}, \mathbf{u} \rangle_k = \langle \mathbf{a}, \mathbf{v} \rangle_k = 0$

ならば

$$-1 \le \langle \mathbf{u}, \mathbf{v} \rangle_k \le 1.$$

[証明]

$$\mathbf{b} = \sqrt{2}\mathbf{a} + \mathbf{u}, \, \mathbf{c} = \sqrt{2}\mathbf{a} + \mathbf{v}, \, \mathbf{d} = \sqrt{2}\mathbf{a} - \mathbf{v}$$

とおけば、 $\langle \mathbf{b}, \mathbf{b} \rangle_k = -1, \langle \mathbf{c}, \mathbf{c} \rangle_k = -1, \langle \mathbf{d}, \mathbf{d} \rangle_k = -1.$ また、

$$\langle \mathbf{b}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle_k = \langle \sqrt{2}\mathbf{a} + \mathbf{u}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle_k$$

$$-b_3 = -\sqrt{2}a_3 + u_3$$

$$\langle \mathbf{a}, \mathbf{u} \rangle_k = 0 \ \sharp \ \mathfrak{h}$$

$$\begin{aligned} k^2(a_1u_1 + a_2u_2) - a_3u_3 &= 0 \\ |a_1u_1 + a_2u_2| &= \frac{|a_3u_3|}{k^2} \\ \sqrt{u_1^2 + u_2^2} \sqrt{a_1^2 + a_2^2} &\geq \frac{|a_3u_3|}{k^2} \\ (u_1^2 + u_2^2)(a_1^2 + a_2^2) &\geq \frac{a_3^2u_3^2}{k^4} \\ \frac{u_3^2 + 1}{k^2} \cdot \frac{a_3^2 - 1}{k^2} &\geq \frac{a_3^2u_3^2}{k^4} \\ (u_3^2 + 1)(a_3^2 - 1) &\geq a_3^2u_3^2 \\ a_3^2 - u_3^2 - 1 &\geq 0 \\ a_3^2 &\geq u_3^2 + 1 \\ a_3^2 &\geq u_3^2 \\ a_3 &> 0 \ \ \& \ \) \qquad a_3 \geq u_3 \end{aligned}$$

よって、 $-\sqrt{2}a_3 + u_3 \le 0$ なので $b_3 \ge 0$ よって、 $B \in \mathbf{h}_{k+}$. 同様に、 $C, D \in \mathbf{h}_{k+}$. したがって、補題 3.1 より

$$\langle \mathbf{b}, \mathbf{c} \rangle_k \le -1, \ \langle \mathbf{b}, \mathbf{d} \rangle_k \le -1.$$

ところが

$$\langle \mathbf{b}, \mathbf{c} \rangle_k = -2 + \langle \mathbf{u}, \mathbf{v} \rangle_k, \, \langle \mathbf{b}, \mathbf{d} \rangle_k = -2 - \langle \mathbf{u}, \mathbf{v} \rangle_k$$

であるため、 $-1 \leq \langle \mathbf{u}, \mathbf{v} \rangle_k \leq 1$.

3.2 2点の距離

定義 3.3. $A, B \in \mathbf{h}_{k+}$, に対し、 $A \in B$ の \mathbf{h}_{k+} 上での距離 $d_{\mathbf{h}_{k+}}(A, B)$ を、補題 3.1 より、次で定める.

$$\cosh d_{\mathbf{h}_{k+}}(A, B) = -\langle \mathbf{a}, \mathbf{b} \rangle_k. \quad (d_{\mathbf{h}_{k+}}(A, B) \ge 0)$$

この距離が距離空間の定義を満たすことはのちに示す.

定理 3.4. $\mathbf{a} \in \mathbf{h}_{k+}$, $\mathbf{v} \in \mathbb{R}^3$, $\langle \mathbf{a}, \mathbf{v} \rangle_k = 0$, $\langle \mathbf{v}, \mathbf{v} \rangle_k = 1$, に対して,

$$\Gamma(t) = \mathbf{a} \cosh t + \mathbf{v} \sinh t.$$

とおく. このとき,

$$\cdot \Gamma(t) \in \mathbf{h}_{k+},$$

$$\cdot - \langle \mathbf{a}, \Gamma(t) \rangle_k = \cosh t,$$

$$\cdot \Gamma(0) = \mathbf{a}, \Gamma'(0) = \mathbf{v}.$$

[証明]

$$-\langle \mathbf{a}, \Gamma(t) \rangle_k = -\langle \mathbf{a}, \mathbf{a} \cosh t + \mathbf{v} \sinh t \rangle_k$$
$$= -\langle \mathbf{a}, \mathbf{a} \rangle_k \cosh t - \langle \mathbf{a}, \mathbf{v} \rangle_k \sinh t$$
$$= \cosh t.$$

$$\Gamma(0) = \mathbf{a} \cosh 0 + \mathbf{v} \sinh 0 = \mathbf{a},$$

 $\Gamma'(t) = \mathbf{a} \sinh t + \mathbf{v} \cosh t$

より、 $\Gamma'(0) = \mathbf{v}$.

$$\langle \Gamma(t), \Gamma(t) \rangle_k = \langle \mathbf{a} \cosh t + \mathbf{v} \sinh t, \mathbf{a} \cosh t + \mathbf{v} \sinh t \rangle_k$$

$$= \langle \mathbf{a}, \mathbf{a} \rangle_k \cosh^2 t + \langle \mathbf{a}, \mathbf{v} \rangle_k \cosh t \sinh t + \langle \mathbf{v}, \mathbf{a} \rangle_k \sinh t \cosh t + \langle \mathbf{v}, \mathbf{v} \rangle_k \sinh^2 t$$

$$= -\cosh^2 t + \sinh^2 t$$

$$= -1$$

 $\Gamma(t)$ は t について連続で, $\Gamma(0)=\mathbf{a}$ の第 3 成分が正より, $\Gamma(t)$ の第 3 成分も正. よって $\Gamma(t)\in\mathbf{h}_{k+}$.

3.3 角度

定義 3.5. $A \in \mathbf{h}_{k+}$ を通る 2 つの測地線

$$\Gamma(t)_1 = \mathbf{a} \cosh t + \mathbf{v} \sinh t.$$

$$\Gamma(t)_2 = \mathbf{a} \cosh t + \mathbf{u} \sinh t.$$

のなす角 $\alpha \in [0,\pi]$ を、補題 3.2 より、次のように定める。

$$\cos \alpha = \langle \mathbf{u}, \mathbf{v} \rangle_k$$

定理 3.6. 角 $\angle BAC$ の大きさ α に対し、次の式が成り立つ.

$$\cos \alpha = \frac{\langle \mathbf{b}, \mathbf{c} \rangle_k + \langle \mathbf{a}, \mathbf{b} \rangle_k \langle \mathbf{a}, \mathbf{c} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{b} \rangle_k^2 - 1} \sqrt{\langle \mathbf{a}, \mathbf{c} \rangle_k^2 - 1}}.$$

[証明] 測地線 AB の点 A における接ベクトルを \mathbf{u} とし、A,B の距離 $d_{h_{k+}}(A,B)=m$ とおくと

$$\mathbf{b} = \mathbf{a} \cosh m + \mathbf{u} \sinh m$$

 $\cosh m = -\langle \mathbf{a}, \mathbf{b} \rangle_k$ であるから

$$\mathbf{u} = \frac{\mathbf{b} - \mathbf{a} \cosh m}{\sinh m} = \frac{\mathbf{b} + \mathbf{a} \langle \mathbf{a}, \mathbf{b} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{b} \rangle_k^2 - 1}}$$

同様に、測地線ACの点Aにおける接ベクトルを \mathbf{v} とすると

$$\mathbf{v} = \frac{\mathbf{c} + \mathbf{a}\langle \mathbf{a}, \mathbf{c} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{c} \rangle_k^2 - 1}}$$

ゆえに

$$\begin{aligned} \cos \alpha &= \langle \mathbf{u}, \mathbf{v} \rangle_k \\ &= \langle \frac{\mathbf{b} + \mathbf{a} \langle \mathbf{a}, \mathbf{b} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{b} \rangle_k^2 - 1}}, \frac{\mathbf{c} + \mathbf{a} \langle \mathbf{a}, \mathbf{c} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{c} \rangle_k^2 - 1}} \rangle_k \\ &= \frac{\langle \mathbf{b}, \mathbf{c} \rangle_k + \langle \mathbf{a}, \mathbf{b} \rangle_k \langle \mathbf{a}, \mathbf{c} \rangle_k}{\sqrt{\langle \mathbf{a}, \mathbf{b} \rangle_k^2 - 1} \sqrt{\langle \mathbf{a}, \mathbf{c} \rangle_k^2 - 1}}. \end{aligned}$$

4 双曲三角形の公式

定理 4.1. \mathbf{h}_{k+} 上の三角形 $\triangle ABC$ に対し、次の公式が成り立つ.

(i) $\cosh l = \cosh m \cosh n - \sinh m \sinh n \cos \alpha$

(ii)
$$\frac{\sinh l}{\sin \alpha} = \frac{\sinh m}{\sin \beta} = \frac{\sinh n}{\sin \gamma}$$

(iii) $\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cosh l$

[証明]

$$\cosh l = -\langle \mathbf{y}, \mathbf{z} \rangle_k, \cosh m = -\langle \mathbf{z}, \mathbf{x} \rangle_k, \cosh n = -\langle \mathbf{x}, \mathbf{y} \rangle_k.$$

であるから、定理 3.6 より

$$\cos \alpha = \frac{\langle \mathbf{y}, \mathbf{z} \rangle_k + \langle \mathbf{x}, \mathbf{y} \rangle_k \langle \mathbf{x}, \mathbf{z} \rangle_k}{\sqrt{\langle \mathbf{x}, \mathbf{y} \rangle_k^2 - 1} \sqrt{\langle \mathbf{x}, \mathbf{z} \rangle_k^2 - 1}}$$

$$= \frac{-\cosh l + \cosh m \cosh n}{\sqrt{\cosh^2 m - 1} \sqrt{\cosh^2 n - 1}}$$

$$= \frac{-\cosh l + \cosh m \cosh n}{\sinh m \sinh n}$$

よって

 $\cosh l = \cosh m \cosh n - \sinh m \sinh n \cos \alpha.$

が成り立つ.

 $\lambda = \cosh l, \, \mu = \cosh m, \, \nu = \cosh n \,$ とおくと

$$\cos \alpha = \frac{\mu\nu - \lambda}{\sqrt{\mu^2 - 1}\sqrt{\nu^2 - 1}}.$$

$$\sin \alpha = \sqrt{1 - \frac{(\mu\nu - \lambda)^2}{(\mu^2 - 1)(\nu^2 - 1)}}$$

$$= \sqrt{\frac{1 - \lambda^2 - \mu^2 - \nu^2 + 2\lambda\mu\nu}{(\mu^2 - 1)(\nu^2 - 1)}}.$$

よって

$$\frac{\sqrt{\lambda^2 - 1}}{\sin \alpha} = \frac{\sqrt{\mu^2 - 1}}{\sin \beta} = \frac{\sqrt{\nu^2 - 1}}{\sin \gamma}.$$

つまり

$$\frac{\sinh l}{\sin \alpha} = \frac{\sinh m}{\sin \beta} = \frac{\sinh n}{\sin \gamma}.$$

が成り立つ。

$$\begin{split} \cos\beta\cos\gamma + \cos\alpha &= \frac{\nu\lambda - \mu}{\sqrt{\nu^2 - 1}\sqrt{\lambda^2 - 1}} \frac{\lambda\mu - \nu}{\sqrt{\lambda^2 - 1}\sqrt{\mu^2 - 1}} + \frac{\mu\nu - \lambda}{\sqrt{\mu^2 - 1}\sqrt{\nu^2 - 1}} \\ &= \frac{\lambda(1 - \lambda^2 - \mu^2 - \nu^2 + 2\lambda\mu\nu)}{(\lambda^2 - 1)\sqrt{\mu^2 - 1}\sqrt{\nu^2 - 1}} \\ &= \lambda\sin\beta\sin\gamma \\ &= \cosh l\sin\beta\sin\gamma. \end{split}$$

よって

 $\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cosh l.$

5 距離空間の証明

定義 3.2 の \mathbf{h}_{k+} 上の距離

$$d_{h_{k+}} : \cosh d_{h_{k+}}(A, B) = -\langle \mathbf{a}, \mathbf{b} \rangle_k, \ d_{h_{k+}}(A, B) \ge 0$$

が距離の定義を満たすことを証明する.

(i)
$$d_{h_{k+}}(A, B) = 0 \Leftrightarrow A = B$$

(ii)
$$d_{h_{k+}}(A, B) = d_{h_{k+}}(B, A)$$

(iii)
$$d_{h_{k+}}(A,B) \le d_{h_{k+}}(A,C) + d_{h_{k+}}(C,B)$$

[証明] (i)

$$\begin{split} d_{h_{k+}}(A,B) &= 0 \\ \Leftrightarrow \cosh d_{h_{k+}}(A,B) &= \cosh 0 = 1 \\ \Leftrightarrow -\langle \mathbf{a},\mathbf{b}\rangle_k &= 1 \\ \Leftrightarrow \mathbf{a} &= \mathbf{b} \end{split}$$

(ii)

$$\cosh d_{h_{k+}}(A, B) = -\langle \mathbf{a}, \mathbf{b} \rangle_{k}
= -\langle \mathbf{b}, \mathbf{a} \rangle_{k}
= \cosh d_{h_{k+}}(B, A)$$
(3)

$$d_{h_{k+}}(A,B) = d_{h_{k+}}(B,A)$$

(iii) 双曲線関数の加法定理より

 $\cosh(d_{h_{k+}}(A,C)+d_{h_{k+}}(C,B)) = \cosh d_{h_{k+}}(A,C) \cosh d_{h_{k+}}(C,B) + \sinh d_{h_{k+}}(A,C) \sinh d_{h_{k+}}(C,B)$ 双曲余弦定理より

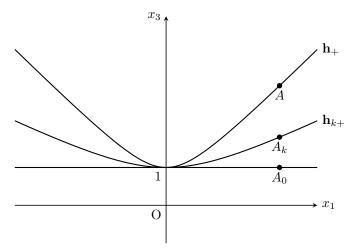
 $\cosh d_{h_{k+}}(A,B) = \cosh d_{h_{k+}}(A,C) \cosh d_{h_{k+}}(C,B) - \sinh d_{h_{k+}}(A,C) \sinh d_{h_{k+}}(C,B) \cos \gamma$ これと、 $\cos \gamma \geq -1$ より

$$\cosh(d_{h_{k+}}(A,C) + d_{h_{k+}}(C,B)) \ge \cosh d_{h_{k+}}(A,B)$$

 $\cosh x$ は $x \ge 0$ で単調増加なので

$$d_{h_{k+}}(A,C) + d_{h_{k+}}(C,B) \ge d_{h_{k+}}(A,B)$$

6 h_{k+} からユークリッド平面への近似



 h_+ 上に点 $A(a_1,a_2,a_3)$ をとり、A から x_1x_2- 平面に直交する方向への射影を考える.

A に対応する h_{k+} 上の点 A_k $(a(k)_1, a(k)_2, a(k)_3)$, 平面 $x_3 = 1$ 上の点 A_0 $(a(0)_1, a(0)_2, a(0)_3)$ について

$$a(k)_1 = a_1, \quad a(k)_2 = a_2.$$

 $k^2(a(k)_1^2 + a(k)_2^2) - a(k)_3^2 = -1 \ \sharp \ \mathfrak{h}$

$$a(k)_3 = \sqrt{1 + k^2(a_3^2 - 1)}.$$

よって

$$A_k: (a_1, a_2, \sqrt{1 + k^2(a_3^2 - 1)}).$$

また

$$A_0:(a_1,a_2,1).$$

 h_{k+} 上の 2 点 B_k , C_k の距離を l_k とすると

$$\cosh l_k = -\langle \mathbf{b}_k, \mathbf{c}_k \rangle_k
= -k^2 (b(k)_1 c(k)_1 + b(k)_2 c(k)_2) + b(k)_3 c(k)_3
= -k^2 (b_1 c_1 + b_2 c_2) + \sqrt{1 + k^2 (b_3^2 - 1)} \sqrt{1 + k^2 (c_3^2 - 1)}.$$

$$f(k) = -k^2 (b_1 c_1 + b_2 c_2) + \sqrt{1 + k^2 (b_3^2 - 1)} \sqrt{1 + k^2 (c_3^2 - 1)}.$$

とおく

$$f(0) = 1$$
, $f'(0) = 0$, $f''(0) = b_3^2 + c_3^2 - 2(b_1c_1 + b_2c_2 + 1)$, ...

より、f(k) を k=0 の周りでテイラー展開すると.

$$f(k) = 1 + 0 + \frac{k^2}{2}(b_3^2 + c_3^2 - 2(b_1c_1 + b_2c_2 + 1)) + \cdots$$

ここで、 $x_3=1$ 平面上の 2 点 B_0,C_0 の距離 l_0 について、三平方の定理より

$$l_0 = \sqrt{(b(0)_1 - c(0)_1)^2 + (b(0)_2 - c(0)_2)^2}$$

$$= \sqrt{(b_1 - c_1)^2 + (b_2 - c_2)^2}$$

$$= \sqrt{b_3^2 + c_3^2 - 2(b_1c_1 + b_2c_2 + 1)}$$

よって

$$\cosh l_k = f(k) = 1 + \frac{k^2}{2} l_0^2.$$

と、k に関して 2 次近似ができる.

同様に

$$\sinh l_k = k l_0.$$

 $\cosh l_k=1+rac{k^2}{2}l_0^2,\,\sinh l_k=kl_0$ などを双曲余弦定理に代入して 2 次近似を求めると,

 $\cosh l_k = \cosh m_k \cosh n_k - \sinh m_k \sinh n_k \cos \alpha_k$

$$1 + \frac{k^2}{2}l_0^2 = \left(1 + \frac{k^2}{2}m_0^2\right)\left(1 + \frac{k^2}{2}n_0^2\right) - km_0kn_0\cos\alpha_0$$
$$1 + \frac{k^2}{2}l_0^2 = 1 + \frac{k^2}{2}m_0^2 + \frac{k^2}{2}n_0^2 + \frac{k^4}{4}m_0^2n_0^2 - k^2m_0n_0\cos\alpha_0.$$

2次近似なので、 k^4 の項は無視することができ、

$$1 + \frac{k^2}{2}l_0^2 = 1 + \frac{k^2}{2}m_0^2 + \frac{k^2}{2}n_0^2 - k^2m_0^2n_0^2\cos\alpha_0.$$

となり、ユークリッドの余弦定理 $l_0^2=m_0^2+n_0^2-2m_0n_0\cos\alpha_0$ と対応していることが分かる.

h_{k+} からユークリッド平面への近似

双曲正弦定理に代入して2次近似を求めると,

$$\frac{\sinh l_k}{\sin \alpha_k} = \frac{\sinh m_k}{\sin \beta_k} \frac{\sinh n_k}{\sin \gamma_k}$$
$$\frac{kl_0}{\sin \alpha_0} = \frac{km_0}{\sin \beta_0} = \frac{kn_0}{\sin \gamma_0}.$$

となり、ユークリッドの正弦定理
$$\frac{l_0}{\sin \alpha_0} = \frac{m_0}{\sin \beta_0} = \frac{n_0}{\sin \gamma_0}$$
 と対応していることが分かる.

参考文献

- [1] 河野俊丈, 曲面の幾何構造とモジュライ [増補版] (2023)
- [2] 中岡稔, 双曲幾何学入門:線形代数の応用(1993)